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ON STOCHASTIC LEARNING THEORY

Merriil M. Plood

i. Introduction

-

R. R. Bush and C. P. Mosteller!, and also W. K. Bstes?®,
have proposed a stochastic theory of learnirg. They suppoae
that the organism makes a sequence of respontss among a fixed
finite set of alternatives, and that there is a probabllity
ps(t) at moment ¢ that response 8 will occur before momeat t+l.
They suppose further that the probabilities pa(t+1) are deter—

mined by: the pa(t), the response s  actuaily made after monent

t, and the event r. that {.llows after regponse B, . Spscifically,

they assume the functional fcrm:

r.s

1.3) p(t+l) = M ° ®p(t),

th component im

where p(t) 18 the m-dimensional vector whose =
pa(t): and M™% 18 a square stochastic matrix of order m whose
eiements ij depend only upon r and 8.

One especially interesting case 1s8 that !‘n which there are
Just two classes of events; for example, they might be reward
and non-reward. Por the purposes of this paper, it willl be
sufficient to consider only thias case aince the more general
case presents no added difficuity. Our object 4s to narrow the

class of allowable matrices M'° by making one more assumption

that seems quite reasonable.

*Numbers refer to Bibllography at the end of the paper.
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A number of suggestions have already Leen mede for
epeclalizing the form of the matrices MP’; several of these are
discussed in & recent paper by R. R. Bush and G. L. Thompson,$
both as to their mathemnatical form and as to their implications
from the standpoint of learning theory. I. is entirely possible
that the proposal I am now making has already been considered

but, if a0, it has not come to my a%tention,

2. Background

I like to think of the elements of the matrices M as
physical conatants that are characteristic of the organism, Jjust
48 mass, color, and hardness may be thought of as physical ¢on—

stants pertaining to an object. The values of the M are to
4 o

be estimated on the taesis of data {rom an appropriate experiment,
Just as the mase of an object might be estimated from & set of
observations taken during an experiment with & spring--balance.
Purthemore, my theory 1s op.rationally well-defined ~only after
I specify some single anal_tical process for estimating the
constants, such as by averaging the observations.

This must be done by observinzg tne orgarism in some situation
where a correspondence is set up lLetween a sequence of observed
and events r

responses 5 and the formal quantities s _ and r

t t
/I8
in the theory; the estimatas M11 are necessarily functions of

o

t

the observations 8,_ and r , though perhaps & different one for

t t’
ecch parimeter. 1t dces not matter that I am as ">t unable to
write these functions simply; all that 1s necessary 18 rLhat there

be a finite computational proceseg that will yieida the deslred
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estimstes '1 in terma of the obaervations it and ft for

tel,2,--+,N. To accomplish this, we rirst let p(t+1) be defined

by the recursion relation

~ A;'-ét/\
2.1) p(t+i) = ¥ “ “p(t) for t—1,2,°<+,N,

A8 N
where M, and pk(l) are defined to be the values of the parameters

8 .
M§J and p, (1) that maximize the "likelihood"

rs
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2.2) LiM

There is nothing new in what I have uyaid 8o far, of course; these

exposltory renarks simply provide the background for what follows.

. Symmetry and Scope

If the theory 18 to be of much interest, and wide usze, it
must provide a valld deescription of a broad class of organismic
behavior; the scope of the theory must be specified irn terms cf
bounds for the class of behavioral situations explained by the
theory. In particular, it should be possible to verify the theory
by testing it for only some situations within a weli-defined
subclass bafore using 1t confidently for predicticns concerning
tne remaining situations of the subclass. I belleve this 18 what
is meant by the term theory 1in sclentific usage."”

As a special case, we might consider the subc ass of all

» "In scientific usage, a HYPOTHKSIS 1s a provisional con—
Jecture regarding the causes or reiations of certain phenomena;
a THECRY is a Lypothesis which has undergone verification, and
which iz applicable to a large number of related phenomena."
‘3 New International Dictionary, Second Edition, Unabridged.
G. and C. Merrlam Company, Springlleld, Mass., 1951, p. 2620.




two—cholice situations for all animals. Still more speclally,
we amight consider the subclaas of alil twc—choice situations for
some cas hume: consisting at any one time of either: a) doing
some particular thing (such as blinking), c» b) nct doing that
thing. There 18 a serious problem in identifying this choice
class at any one time with what appears to be the same situation
at another time, but the important *hing is to be able tO do this
80 well that the theory does in rast chevx out cioseiy and often;
deviations between theoretical and obser/ed behavior must then
be sorted out after the fashion of the statistician and if after
probing they seem to be unexplainable and satisfactoriiy small
then the theory is considered to be valid for such purposes.

1f we were lucky w!th the stochastic learning theory we
might find a large class of human choice experiments explained

by 1t ir this sense. PFor instance; if the estimates of the

rs
parameters H1J were found to agree well in repeated trials with
the same perscn in some one experimental learning situation then

rs
we would accept this as evidence that the ﬁij were physical

constants anc _characteristic of the situation. If these same
values were found for many types of humans, but another set of
congtants was found repeatedly for rats in the same experimental
situation, then we would accept -his happlly as evidence that

our theory had still wider scope. Thus, scientific development
consists in increasing the extent of the subclass of situstions
that can be explained reliably by cach hypotheais and in shavrpening
the boundary between this subclases and c¢thers in which the

hypothesis fails,
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And so with the stochastic learning t.»- v P gocd rivat
satep would be to find any experiment with humans, involving
choices and rewards, that can be repeated over and over again
yet always ylelding essentially constant ﬁ:?. Then a gcod second
step would be confirmation of this constancy in quite a different
experimental situation. As an example, suppose that the Mo
could be estimated reliably for a rat and & man with the same
avnavimantal “asisn, Just as they can both be weighwd on the
same scales, and that these estimates ﬁ::t and ﬁ;:n are used
successfully to predist the amounta that the man and the rat
would each win playing cooperatively in some carefully selected
non—zero sum game; then this result would increase¢ cur confidence
ir. the validity of the learning theory in sush situations.

Turn now from sccpe to symmetry, and start with the notion
that there must have been & first occurrsnce for each cholce—
situation met by the organism. On the first occurrence, esser—
tially by definition, there would be no way for the organism to
have & bias in favor of any single choice. PMPurthemmore, if the
theory is to be of use, the numbering of the cholces 1s s&rbitrary
and the valldity of the theory cannot be dependent upon the
numbering actually selected. In other words, the matrices "rs
must be such that any two vectors q(t) and q(t+1) obtained by
&pplying the same permutation to the components of pjt) and p(t+l)
must satisfy the relation

q(t+1) = M %q(t)
whenever

p(t+1) = M"%p(t),




and provided that the permutstion leaves the sth component
unchanged. In the next section, where this assunption is stated
more precisely, it is shown that aymmetry restriots the matrices
lr' very considerably; the number of independent parsmeters is
reduced to three for each event class whanever there are more

than two choices, and to two for each event class otherwise.

4. Symmetrical Model

We start with stochastic matrices “ra, for r=0,1 and
$wl,2,---,m, a8 in Section 1. 1In this section, 1t will sowetimes
be convenient %o omit the superscript r when the argument is
independent of this distinotion. Purthermore. it will be enough
to mak. the argument for some one value of &, say s=1, since an
exactly simiiar arqument holds for other values of 8; 80 we also
omit the superscript s, with the understaniing tlat we are dis—
tuKaing only "rx sxplicitiy in thiec section, and consider the
elenants M, of this typical stochastic matrix MeM''.

vur symmetry assumption 18 now equivalent to the condition
4.1) TMp(t) = MTp(:),

where T 1" any permuta:i{on matrix such that T,, = 1 and where
p(t) 1s aay probabvility vector. Since p(t) can be any unit
vector, an equivalent condition is simply that M must commute

with every T .o We mAay se’

3,2) ™ = MT = K,




An equivalent requirement is, therefore, that

k.3) RJX - M, and ﬂyJ = K,y for i,J=2,-:,m;

X,y=i,2, " ,m.

It followa easily from 4.3,, whenm > 2, that K must ve of the

form
1-(m—1)a* ©oF b’ ce b¥ b*
r r
a 2
i 1--br—cr
i _r r —_—
rl ; A ~ m-"Z
k. 4) M ® . .
T _r ‘.
ar _:b - AT
m—2
a’ cr

where a, b, and ¢ are three paramezers sudbject only to the

regrrictions:

0<a< 1l/im1)
| o¢b <1,
+5) 0¢e <1,

0 b+ < 1.

When m=2, there are only two psrameters, and M is of the form

§.6) M= [

where a and t are arbitrary within the clcsed unit interval.

Of co.irse, the genera. symmetrics]l model %% 1s obtalneu by

permuting the 1"t and ath rows and the 1Bt and ath columns of

T,

r.r . . Lz
M(a ,b ,c’ ) as defined by the reiations 4.4) ani 4.6).




5. Some Comparisons

Bush and Mosteller® have proposed a specialization of tne
genersl operator MT® of Section 1, calied by them tie "combining
classes” model, wiiich is determined Ly the requirement that

condition 1.1) reduce to the cond‘tion

re s
5.1) pi(t+1) - a, pi(t) + Dy

Of course, the parameters ap;earing Iin 5.1) are also sublect to

the resirictions

m  ra m ra rs
rs rs . rs rs s
502) a bl 1 - 2 [ s a ’ z (c <\ l min b! ":’2 ’.. 7 m 4
el U {my - !

0 < t,” < 1.

In matrix form, a8 hr~ beer shown 'ty Buah and Thompson,d 5.1) and

5.2) are equivalent to

rs . .
where the 4, are compornents of an arbitrary ;rorariitty

a

rs . . .
vector and a {8 sl ect only to the rasgiriction

min. .78
PB B t‘. L-i .
1 >a > —h st
= rs .
min ., -1

' -

-




L 18 obvious, .on compariaon of .-} -nu f.3%), that "na

gyimetirical nodel 18 of combining c.a88e8 form - and only *'F

g = - —2f. {a <.4). Ln the ctner harcd, tre somtining c.amses

, rs . rs
form 5.3) has 3ymmetry ¢ and oniy 1f a and . = are inds, endent
of a and
rs
rs l"e
B R (1 p s,

m—1
Th.a, nettner wne synretrica: mclel ror tne comulr'‘ng ¢.asses

m dei: can e orralner from Lne cther ty mrecla.lizing JaremevLer

1 - N PE N . ”
J8iie8.  Ang, of course. tie sayTmetrica. tumiining C.asses
. v 1r T'_~T
ncde , detined 17 <.« ani tne copsiiion Thal 8 0w — - ,
~
M

b

gatiafies tct: e comiining c.anses and gymmetry ass.mptions,
Sti:. mcre sreciallzed models conaidered Uy Buan and
3

Tnompsond, in wnicn 1l shali bLe interestei, incl.ide the two

foLiowing, wnern wrilten as special camses of <, .o,

. . . ~ / N bt . { e
M xed Moge, o), o mloim-2ta, aten, claim_ijav,
lal im_lig
. Tih.e Error Pro: _em
Troere (o ar ! yrrant sense (o ownhton rone oF oy modeis 8 |

vet oauttar e Sor ex-erimentg. verilication: we nave male il

al.owance for oiBervaticona. errar in Lhe =odels, ALl LRl we

- - - . . . o VaTalh A . [ o~ L . ~ G o~ e d -
rave .g=2d Trna [i1rxe. thool metnocd {in Jectin 27 0 [ ToVIi® an
.. - ’ - 4.0t K] .- Nl - - . H . o . [y * )
Sy arationa. Jefiniotyn ol Cur caraneters, ni ever 10020 tre

crccess witn wh'cr w4e ire dea.ing ‘s stoicrAastic, we sti.. wmust
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include some ordinary error parameters in our theoretical model

Lefore we can complete the estimation calculations in meaningful
terms. I zhall now intro‘uce a new learning model, including an
error parameter, to clarily this point.

As in Section 1, the component pi(t) of an m-dimensional
provatility vector p“(t) represents the probability of response
1 after mcment t. Now we introduce an suxilisry m-dimensional
probability vector q(t), with components qi(t)' that satisfies

the stochastic relation
r.s
6.1) q(t+1) = u © ¥q(t);

where nrs, Tyeo and 8, have the same definitions as in Section 1.

Pinally, we define p“{t) by the relations

6.2) p*(t) = it} 1ifr = 0,

t—-1

pT{t) = e, iIf r

= ]
t—1 t—1 !

where L is the probabllity vector wncse xtb

component 18 unity;
in words, this means that the organism never changes 1ts cholce
after a rewarded rssponse. It is immediately apparent, that the
likelihood of 2.7) will be zero with this model for any set of
observational data in which there is even a single exception to
the rule "dun't change on a winner;" and this willi be the case
even if the apparent exception is due (L. a clerical error.

We will modify the nodel by adding & new parameter O
representing the probabi'ity that at any moment t, after a

rewarded cholce s that a choice 8, ps will be made at

t—1’ t—1
random among the (m—1) aiternatives rather than according to the
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protability components of p'(t). This leads to a probability

vector p(t) defined by the relation

c(t) = q(t) ifr = 0,

6.3) t—1

5]

p{t) = {1-0)e + —{(J-e if r =1
( ( 8, , m-1 8, :) t—-2 !

wnere J is the m—dimensiosnal vector whose components are &ll

unity. The new likelihood function is then
6.0 LIS b (1), 6] = [oy (1) TT 5 ()] [1-042 )
SR AL 81" Trar 8¢ -y

where r.s_ = 1, A ls the riumber of times 8.+ = 8,._,, and B 1»

the number of times 8.« # 8,»_ . It is easily seen that the

i
value ol 6 that maximizes this likelihood is

0.5) 0 = — ,

With the statistical parameter © ineluded, 2 clerical error
after a rewarded cholce need no longer make the likellhood
zZero.

Perhaps a better way to include the error parameters is
to distingulsh between those occurring after a rewarded cholice
and those after a non—rewarded choice. This can be rationalized
by notipng that there are really two rather different typés of
errors, one class due to clerical and other chservational flaws
and another class due to the inexactness of the theory. I r
example, I suspect that changes after a rewarded choice that

are made while the environment is really stationary, and with
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no serial correlations. reflect the tendency for organisma %o
continually search for evidence of non-stationarity, and for
serial correlation; none of ocur models is general enough to
match such tenaencies.

For a moment then, we will consider a model in which two
statistical parameters appear. We start with any model, 1like
those specified by 1.1) or 6.2), in which there i1s a vector
p(t) whose component Ee(t) represents the approximate probability
that the organism will make choice 8 after moment t. We next
suppcose that ‘he probability is 6! after a rewarded cholice, and
e° after & non-rewarded choice, that the organism will not choose

according tc the vector p(t); aiternatively, the parameters e

tical and observational error. The probability vector p(t) that

we should uge to represent total behavior ie, therefors,
6.6) jt) = [}1«-6‘)”(t)+91.ﬂr +[(1—e°)‘(t)+9—°J](1---r )
. P PAMITR Y1 Te PAL ¥ t—1’"

The likelihood estimates of 6° and 6!, for this model, cannot

be written explicitly for the generesl operator M"® that ylelds
p{t+1) from p(t); this was possidble for the model of 6.3) only
because the factors of the likelihood function involving € were

not dependent upen M{ﬁ.

7. A Preferred Model

I prefer the stochastic learning mode! defired by v.3)
and 6.06), where q(t) satisfies a stochastic relation of the

form 1.1) with N'® of the form 4.4) or 4.6)., This model is not
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I‘Bt

of the form 1l.1), whera M Lt s required to be a stochastic

r.s
matrix, but it is of the form 1.'! if M T is interpreted
as a more general operator. Thit "}referred Model” includes
error parameters BJ, provides directly for the "don't change on

a winner"

principle, and restricts the class of operator matrices
a8 required by the symmetry assumption. The Preferred Model,

for m > 2 and starting at moment t,» hes the following m+b
independent parameters: pi(to) for 1=1,2,+,m-1; aJ, bJ, cJ,
GJ for J=1,2. We think of the parameters 9J &8 relevant to
correctionse both for clerical error, and for such thaoretical
errors £8 those due to apparent non-staticnarity or serial
correlation in the proceas.

The main hypothesis is that the theoretical scope for the
Preferred Model is the class of all m—choice repetitive situations
for organisms acting in a stationary serially uncorrelated
environment, and one in which each repetitive m—choice situation
has a first occurrence at moment t=1. The simplest experiments
to test this hypothesis will probably be those in which the
parameters pi(to) will all be taken equal to (1/m), on the
assumption that the experimental choice-situation represents a
first occurrence, at least at the start of work with each new
subject.

In 8 very strong sense, the main hypothesis would be
supported if all the peramaters were found to be essentially
constant over a class of situations In which the value of m
and the frequencies of reward and non-reward were varied widely.

There would also be good support for the hypothesis if the




~1be
parameters aJ, bJ, and cJ were found tco remain esséntially
constant over a class of situaticns in which m wes held fixed,
and the initial trial with each sulhject was controlled to be a
rirst occurrence with pi(to) = (1/m), but the frequencles of
reward and non-reward were varied.

Unfortunately, it is not at all necessary that any parameter
explicit ir the model be observationally rather constant, over
an appropriate class of experimental situations; 1t would be
enough if only certain functions of the parametere were obser—
vationally constant. In this aense, one can never reject the
model; one can only note that a particular set of observations,
as they ware interpreted in terms of the model, do not lend
suppcrt to the main hypothesis. Such a result 18 non~conatructive,
since progress requires success in cdbserving constancies relative
to the model. In all, then, the Preferred Model and the main
hypothesis can never be more than guldes for experimentation; in
this sense, what we really have is only a gulde to preferred

experiments.

8. Some Preferred Experiments

There 18 much to be said for first testing the maln
hypcthesis for the two—cholice situation, since in this case
there are two fewer parameters than when m > 2. And 1t will

certainly be easier to control the starting vector pft_) than

0
tc estimate 1t fr-m the experimental data.
If success is met in the two—choice case, in the sense

that all of the five parameters remain essentially constant,
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then 1t will only be necessary tc estimate the two new parameters
in the three-cholce case if it should be true that values are
independent of m. If all this goes well, it will provide strong
support for the tihc =y if these same constant parameter values
are found as m is increased.

It 1s reasonable to hope that all the parameters, in the
m—cholce case, will bz essentizlly constant as the rewara and
non—-reward frequeéncies are varind. In this favorable event, it
will be deairable o try other vartatiens in the conditiong
aurrcunding the m-—choice case, such as amount °f reward, in urdew
to find the experimental boundig within which the model seems to
be valid (its scope) in m—choice situations.

Perhars the most important of all experimental design
considerations is the requirement that the data not only be
adequate to determine the parameters but that the estimation
calculations be manageable., The best way that I can now aee to
hand'e the estimation problem is to keep the number of successive
playm small in any one sequence after starting with a probability
vector assumed known. More specifically If the total experiment
with one subject consists of n sequences of N plays each, in
which the starting vector in each sequence is (J/m), then N
sho i1d be kept as small as possible &nd n should be fairly large.
For «xample, if m=2 and N=4 then the parameters in all the models
considered in this paper are easily estimated 1f n is large

encugh; the method of estimation is illustrated in Section S.
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This very briel outline can only suggest the dire-~tion for
preferred experimentation at the start, since later designs must
depend upon the results of earlier tests. (enerally speaking
the object is to proceed from the simple to the more complex as

observed constancies permit this type of development.

9. Parameter Estimation

The general method of parameter estimation wili ve
1l1lnstrated in this section by calculating some of the formulas
for one model—experiment combination. The method 1s,qu1te general,
if the experiments are carefully designed tor the purpose, and
seemg to prnvide manageable estimation formulas for most of the
models discussed in this paper.

The model 1s defined by the followlng relaiions:

a b, ‘1-b_ 1-a
3.1) M o. < r ro, M2 . { r r) ,
— 4
1-a, 1-b_ ) . b, &
0<a <1, 0<b <L
R xﬁt R ost
1 9.2) q(t+1) = (r .M “+(1-r )M “)q(t) for t=1,2,...,N.
9.3) p(t) = ;t[(1~“)eg +W(J/2)}+(1—Ft)q(t) for t=2,3,.-+,N.
t—1
9.4) p(1) = q(1) = (J/2).

The experimental design provides that:
a. Each of n triais requires five successive cholces

between two alternatives,
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th thotlce 1n

b. The probability of reward on the i
each trial 1is LET and the LA are constant from trial to
trial.

c. The result of reward or non-reward is in every
instance ind.pendent of the choice actually made.

d. The patiern of reward and non-reward 1s determined

independently for each trial by means of a table of random

numbers.

In practice, I have used a punchboard with two columns and five
rows. There aie 32 possible patterns of reward and non-reward
for one trial, since each of five rows is either rewarded or
non-rewarded, and the choice among these is made according to a
protablility distribution determined by 32 probabilities ¢J; of
course the v, are determined uniquely by the ¢3. Most important
of all, every effort is made to convince the subject that the
trials are independent, so that he will not be influenced in
his behavior in any one trial by his experiences in earlier
trials, Actually, any other (5x2) design that preserves indepen—
dence between trials, symmetry bLetween columns, and independence
vetween and wiltuln columns of one trial would provide the data
necessary for estimation; prcvided all possible reward patterns
appeared s:fficlently often.

The tae'~ cobservational quantities that we shall use are

frequencies defined as follows:

TiTz...T, Nunter of times in ali n trials
o ( -
G. %) 8,85, ..8 ‘8t+x) that s, was chosen after prior
chclices 8

{ and results ri.
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We shall alsc need the associated gquantities:

Y“rauoor

9 6) 7 t . Total number of times in all n trials
* 8:83° 8, thet the cholces were 8, and resulta r .
r‘r!ovot‘t
rirge* 818g°°°8 (s)
2 t 108 t
132'°'8t rlr.co‘rt

B‘B.o ..Bt

The principle of the likelihood estimation method is to
calculate theoretical probabliities HfF(s), as finctions of some
t
or all of the parametera cf a model, corresponding to each of

r
several independent observables F_“(s). Then the likelihood
T

function L. & LN(Gr’b ,W), for n trials and N choices eac.. trial,

r
is defined by the relation:

N 2 Fo .
9.8) log Ly » I Z L F_"(s) log H “(s).
t=l t

T fy 8=l

The recuired parameter eatimates are the valies of ar, r_, and

r
w that maximize LN’ where each parameter i1s restricred to the

ciosed unit—interval.

Unbiased estimates may also »e obtalined, though at a

sacrifice of yrecis‘on, vy ising any sutprodict of LN that

:-‘t (

inel.des the term :i_"(2) 1f the term H_"(i) 's sresent. Thire

t v

amounts to the assumytion that <he 4_ "(s) are indejendent

-~ N
T
distrituticon finctione 0f a. It 's gometines convenient ¢

bl

maxe :8e of this se’ ection yprinci..e, in © > B8implify the

)
«t

acer
N

ro.merical caliciiations, when the fuli set CiI ,Arameters can

therer,; e troxen into sibse.s “or estimaticn jurposes.
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As an example, consider the case N=2; then
1 2 T : 2 r;r. r;r.( )
9.9) log Lg = Z I F, (s)log u (a+ 5 z P - (s)1og Hh.. s).

r;=0 8y,8=1" Ty, Te=0 81,8281

-

1%‘» ’
£, ,
If only the terms involving r =0 and 848 =1 are usged, then just

the two parameters a_ and bo will appear, and the likelihooud

expreassion becomes

2 00, . 00
) = X [Fx 8)log H, ( )+P a(8)i0g Hia(s)],

G.10) log L(a_,b
)
s=1

0

o 00
where {t 18 also assumed that F,(s) > O and P,a(s) > C. We note

that:
o1
3.11) 2H (1) = eM J = a_+b,,
Qo (o]
35.12) 2H1a(1) = eiM "0 = 14(1-a_—t ) (1-a_+b ).

It foilows easi.y, dropping the sibscripts on 3, and bo' that;

o o) , 00 co
9:13) 2log L _ Fy(1) _ Ry(e) | (2a-2].;4(1) __(ca-2)r,g{2)
‘a a+b 2—a-t 14(1-a~t)(l-a+d) i-(l-a-b)(1-a+db)
i o o co oo .
| slog L _ Paf{l) _ Pyi(2) 2bP,a(1) . 2bP;g.2)
2.14) Jb a+b 2—a—t 1+{1—a-b){1-a+d) 1-{l1-a-t)(l1-a+t)}

17 we set

;3108 L - 5‘106 L
s a Jb

) o
and solve rfor & and o with the aondiclons R;{1) # R;{2),

ofe 00 ) “
Ria(l) » Rig(2), and a+b p4 1, we cotbtain




9.15)

5.16)

whence

G.17)

9.18)
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..J.L.l _'LR_L_). R and

a+b 2—a-b

00 00
Ria(1) . 1-R; (1)
1+(1-a-b){1-a+t) 1-(1—a—-b)(l-a+t)

.. ernﬁg1lljb+ Ria(l) = 1

2Ry (1) - 1

o v o0,
v « 2[R3(1)% - Eﬂéil) — Riell) + 1
2, (1) - 1

o, . o 00, . 00 ~
If either R;(1) = R;(2) or Ry2{1) = Ryaf2) then ali soiutions

of 9 15) and G.15) satisfy the condit‘on a + b = 1, and we shall

consider this case separately. We are left with the result that

the function ig, defined by 9.10), does not attain 1ts maximu~

value within the restricted range of the rarameters a, and ©

O

axcept possib.ly =aen:

1 and b satisfy 5.17) and 3.12) and e

AR

within the closed :nift—{nterval, or

T, & = (3 or
- o

¢ v - (), « -
- o

4. a_ =1, ovr
- o

e L. = 1, or
ol C 4

” 8 +! = 1
-~ o 0

It 's eas!ly aeen, rememtering tnat P {s; > ¢, =nhat




-2)

L2(0,0) = La(1,1) = ,

o 00

h—(Fx*an)
L,(ao,l—ao) -2 > 0,
o 00 0 00 o 00 ~
—(FP1+P12) F(1)+F,19(2) Pi(2)+P1a(2) 2 P
La{a_,0) = 2 8, (2-a,) (1+[1-a_]*)

and that Lg(ao,O) > Lg(ao,l—a for some va.ue of a_ in the open

o)
.nit—-interval, Consequently, 't follows that Ly attains its

maxim.n valie, within the restricted range fHr a, and bo’ only 1f:

a. a_ an b satisfy 9.17) and 3.158), or
Le a = (O ant bo {s i{n the vpen unit—interval, or
3.19) ¢c. b, =0, and a_ 18 in the open unit—interval, or
d. a_ =1 and to is in the open .unit-interval, or

e. .= 1 and 8, {s in the open unit-irnterval.
- i

It !s a tedious 4yt straightforward ca.c :isation to determine the

estimated values w'*h the help of the condi:icns 9.1%).

in ore {10t experiment, the ovserved values were

co DT

O O . ,
o ~ . ~\ -~
}‘x\l> - ?9 Fl E} = ‘tﬁG: Fl?(l}‘ “'1; Fltl'»’j - 19,

and so
\ 20, X

R)(l’ - l/wl an Rl?‘,l,’ = w1,-C.

Jeilng -.1v), we have
< 2 41
. < Lo
, ’1? — ~¢1 — : N
o T T - <9
— -1




~20-

Consequently, we must consider the possibilities:

2221,(0,b) = v*0(2-5)%0(2p2) ¥ Ly, (v),
EIQQL(a,Q) - 321(2«a)99(2—2a+a‘)u1 = Ho(a),

.20
3.29) 2142101 1) w (140)43(1-0) 121 (1402) 1% © g, (p),

21’&2 )162

L{A,1) = (1+8)%(1-8)2%%(1+2a—02)19 = H (a).

The following inequalitles are easily verified:

62 62

He(a) < 221, Ha(b) < 2°2, Ha(1/5) > 1019 5 2%2,

and the required solution is therefore determined vy Hy(b) or

Ha(a). The maximum values of H;(b) and Hz(a) are approximately

He(1/5) = 1017 > H((2/3) = 101}

ard 80 the required estimate is

a, = 0.220, bo = 0;

1t 13 also to be expected that neither ﬁo nor ﬁo 1s 1 because
9.15) requires that their swn be approximately 2/41. The estimate
for ﬁo can be determined more exactly by solving for 1t as a root
o the equation

9,31) 10183 — 264a? + 2U4a_ — 42 = Q.
0 fo) (e}

We turn nox to the observables Fi(a) and Fii(s). The

1ikelithood function corresponding to these giantities 1s

Pi(1)+F1:(1) P1(2)+F11(2)
Liw) = (1-%/2) (w,/2) .
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It is easily seen that the value of w that maximizes L{w) is

(2) F11(2
Fx + ”11

w

More generally, if all the experimental data were used to
estimate w, it is easily seen that the result 1is:
- 2r*
r+£*
where f 18 the number of repeats after a winner and f" is

the number of non-repeates after winners.

For the pilot experiment the estimate is

x ¥
W o= ilf' - ;% , using N = 3 only.
+

Actually, in the pilot experiment, the subject always repeated
after a winner so the estimate 18 stiil w = O when 211 the data
are uaed,

The e¢stimation of a; and b, requires that data for N = 4
be used, and the calculations are a bit more tedious so the
detalls are omitted here. The method 1s exactly analogous to

that Just used for obhtaining estimates of 8, and bo'

10. Summary
A stochastic learning model is proposed in which:

a. Explicit provielon is made for errora of observations.

L. Separate allowance is made for the "don't change on a

winner" principle.




‘ ’ . ' \ ;f‘ - A ©

ol

¢. The nunver of independent paramters is reduced, from
that in the general matrix operators used by Bush and Mosteller,
by a\symmetry asaumption.

d. A preferred model is introduced and discussed, but
it 1s nop’iikely that the learning theory represented by this
model will'have great scope.

6. The significance of these matters, with respect to
measurement of the physical constants hypothesized by such
stochastic learning modéls, 1s discussed in relation to simllar
queations pertaining to a few alternative models.

‘ f. An experiment 1s deacribed, together with a method for

estimating parameters, that should.be adequate to provide a

critical test of the variocus alternative theories discussed,

. .
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